Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell Rep ; 42(6): 112613, 2023 May 29.
Article in English | MEDLINE | ID: covidwho-2328166

ABSTRACT

Certain serum proteins, including C-reactive protein (CRP) and D-dimer, have prognostic value in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, these factors are non-specific, providing limited mechanistic insight into the peripheral blood mononuclear cell (PBMC) populations that drive the pathogenesis of severe COVID-19. To identify cellular phenotypes associated with disease, we performed a comprehensive, unbiased analysis of total and plasma-membrane PBMC proteomes from 40 unvaccinated individuals with SARS-CoV-2, spanning the whole disease spectrum. Combined with RNA sequencing (RNA-seq) and flow cytometry from the same donors, we define a comprehensive multi-omic profile for each severity level, revealing that immune-cell dysregulation progresses with increasing disease. The cell-surface proteins CEACAMs1, 6, and 8, CD177, CD63, and CD89 are strongly associated with severe COVID-19, corresponding to the emergence of atypical CD3+CD4+CEACAM1/6/8+CD177+CD63+CD89+ and CD16+CEACAM1/6/8+ mononuclear cells. Utilization of these markers may facilitate real-time patient assessment by flow cytometry and identify immune populations that could be targeted to ameliorate immunopathology.

2.
Clin Infect Dis ; 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-2267254

ABSTRACT

Long COVID (LC) constitutes a potential health emergency as millions of SARS-CoV-2 infections lead to chronic symptoms. We must understand whether vaccines reduce LC as this has major implications for health policy. We report a 79% reduction in LC referrals correlating with reinfections and vaccination in the UK.

3.
J Infect Dis ; 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2276165

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, has caused widespread morbidity and mortality since its onset in late 2019. Here, we demonstrate that prior infection with human cytomegalovirus (HCMV) substantially increases infection with SARS-CoV-2 in vitro. HCMV is a common herpesvirus carried by 40-100% of the population which can reactivate in the lung under inflammatory conditions, such as those resulting from SARS-CoV-2 infection. We show in both endothelial and epithelial cell types that HCMV infection upregulates ACE2, the SARS-CoV-2 cell entry receptor. These observations suggest that HCMV reactivation events in the lung of healthy HCMV carriers could exacerbate SARS-CoV-2 infection and subsequent COVID-19 symptoms. This effect could contribute to the disparity of disease severity seen in ethnic minorities and those with lower socio-economic status, due to their higher CMV seroprevalence. Our results warrant further clinical investigation as to whether HCMV infection influences the pathogenesis of SARS-CoV-2.

4.
Nature ; 593(7857): 136-141, 2021 05.
Article in English | MEDLINE | ID: covidwho-2114170

ABSTRACT

Transmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.7 variant1, which has now been reported in 94 countries. It is unclear whether the response of the virus to vaccines against SARS-CoV-2 on the basis of the prototypic strain will be affected by the mutations found in B.1.1.7. Here we assess the immune responses of individuals after vaccination with the mRNA-based vaccine BNT162b22. We measured neutralizing antibody responses after the first and second immunizations using pseudoviruses that expressed the wild-type spike protein or a mutated spike protein that contained the eight amino acid changes found in the B.1.1.7 variant. The sera from individuals who received the vaccine exhibited a broad range of neutralizing titres against the wild-type pseudoviruses that were modestly reduced against the B.1.1.7 variant. This reduction was also evident in sera from some patients who had recovered from COVID-19. Decreased neutralization of the B.1.1.7 variant was also observed for monoclonal antibodies that target the N-terminal domain (9 out of 10) and the receptor-binding motif (5 out of 31), but not for monoclonal antibodies that recognize the receptor-binding domain that bind outside the receptor-binding motif. Introduction of the mutation that encodes the E484K substitution in the B.1.1.7 background to reflect a newly emerged variant of concern (VOC 202102/02) led to a more-substantial loss of neutralizing activity by vaccine-elicited antibodies and monoclonal antibodies (19 out of 31) compared with the loss of neutralizing activity conferred by the mutations in B.1.1.7 alone. The emergence of the E484K substitution in a B.1.1.7 background represents a threat to the efficacy of the BNT162b2 vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , COVID-19/metabolism , COVID-19/virology , Female , HEK293 Cells , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunization, Passive , Male , Middle Aged , Models, Molecular , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Synthetic/administration & dosage , COVID-19 Serotherapy
6.
EBioMedicine ; 81: 104129, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1906949

ABSTRACT

BACKGROUND: There is currently no consensus on the diagnosis, definition, symptoms, or duration of COVID-19 illness. The diagnostic complexity of Long COVID is compounded in many patients who were or might have been infected with SARS-CoV-2 but not tested during the acute illness and/or are SARS-CoV-2 antibody negative. METHODS: Given the diagnostic conundrum of Long COVID, we set out to investigate SARS-CoV-2-specific T cell responses in patients with confirmed SARS-CoV-2 infection and/or Long COVID from a cohort of mostly non-hospitalised patients. FINDINGS: We discovered that IL-2 release (but not IFN-γ release) from T cells in response to SARS-CoV-2 peptides is both sensitive (75% +/-13%) and specific (88%+/-7%) for previous SARS-CoV-2 infection >6 months after a positive PCR test. We identified that 42-53% of patients with Long COVID, but without detectable SARS-CoV-2 antibodies, nonetheless have detectable SARS-CoV-2 specific T cell responses. INTERPRETATION: Our study reveals evidence (detectable T cell mediated IL-2 release) of previous SARS-CoV-2 infection in seronegative patients with Long COVID. FUNDING: This work was funded by the Addenbrooke's Charitable Trust (900276 to NS), NIHR award (G112259 to NS) and supported by the NIHR Cambridge Biomedical Research Centre. NJM is supported by the MRC (TSF MR/T032413/1) and NHSBT (WPA15-02). PJL is supported by the Wellcome Trust (PRF 210688/Z/18/Z, 084957/Z/08/Z), a Medical Research Council research grant MR/V011561/1 and the United Kingdom Research and a Innovation COVID Immunology Consortium grant (MR/V028448/1).


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/complications , Humans , Interleukin-2 , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
7.
Cell Rep ; 38(7): 110393, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1719435

ABSTRACT

B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.


Subject(s)
COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , Vaccination , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , COVID-19/prevention & control , Clonal Evolution , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Isotypes/genetics , Immunoglobulin Isotypes/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Kinetics , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , Severity of Illness Index , Somatic Hypermutation, Immunoglobulin/immunology , Spike Glycoprotein, Coronavirus/immunology
8.
Cell reports ; 2022.
Article in English | EuropePMC | ID: covidwho-1661209

ABSTRACT

Kotagiri et al. find that SARS-CoV-2 infection versus vaccination induces distinct changes in the B cell receptor repertoire, including prominent clonal expansion in IgA and IgM after infection, but IgG after vaccination. A broad anti-spike response to infection contrasts with a narrower RBD-focused one after vaccination, potentially informing vaccination strategies.

9.
Immunology ; 165(2): 250-259, 2022 02.
Article in English | MEDLINE | ID: covidwho-1511322

ABSTRACT

Accurate assessment of SARS-CoV-2 immunity is critical in evaluating vaccine efficacy and devising public health policies. Whilst the exact nature of effective immunity remains incompletely defined, SARS-CoV-2-specific T-cell responses are a critical feature that will likely form a key correlate of protection against COVID-19. Here, we developed and optimized a high-throughput whole blood-based assay to determine the T-cell response associated with prior SARS-CoV-2 infection and/or vaccination amongst 231 healthy donors and 68 cancer patients. Following overnight in vitro stimulation with SARS-CoV-2-specific peptides, blood plasma samples were analysed for TH 1-type cytokines. Highly significant differential IFN-γ+ /IL-2+ SARS-CoV-2-specific T-cell responses were seen amongst previously infected COVID-19-positive healthy donors in comparison with unknown / naïve individuals (p < 0·0001). IFN-γ production was more effective at identifying asymptomatic donors, demonstrating higher sensitivity (96·0% vs. 83·3%) but lower specificity (84·4% vs. 92·5%) than measurement of IL-2. A single COVID-19 vaccine dose induced IFN-γ and/or IL-2 SARS-CoV-2-specific T-cell responses in 116 of 128 (90·6%) healthy donors, reducing significantly to 27 of 56 (48·2%) when measured in cancer patients (p < 0·0001). A second dose was sufficient to boost T-cell responses in the majority (90·6%) of cancer patients, albeit IFN-γ+ responses were still significantly lower overall than those induced in healthy donors (p = 0·034). Three-month post-vaccination T-cell responses also declined at a faster rate in cancer patients. Overall, this cost-effective standardizable test ensures accurate and comparable assessments of SARS-CoV-2-specific T-cell responses amenable to widespread population immunity testing, and identifies individuals at greater need of booster vaccinations.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Carrier State/immunology , Immunity, Cellular , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Th1 Cells/immunology , Vaccination , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/prevention & control , Female , Humans , Interferon-gamma/immunology , Male , Middle Aged
10.
Nature ; 596(7872): 417-422, 2021 08.
Article in English | MEDLINE | ID: covidwho-1287811

ABSTRACT

Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating.


Subject(s)
Aging/immunology , COVID-19 Vaccines/immunology , Immunity , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Aging/blood , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , BNT162 Vaccine , COVID-19 Vaccines/administration & dosage , Female , Health Personnel , Humans , Immunity/genetics , Immunization, Secondary , Immunoglobulin A/immunology , Immunoglobulin Class Switching , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunologic Memory/immunology , Inflammation/blood , Inflammation/immunology , Interferon-gamma/immunology , Interleukin-2/immunology , Male , Middle Aged , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
11.
Immunity ; 54(6): 1257-1275.e8, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1230571

ABSTRACT

The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Lymphocyte Activation/immunology , SARS-CoV-2/immunology , Biomarkers , CD8-Positive T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/genetics , Cytokines/metabolism , Disease Susceptibility , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Longitudinal Studies , Lymphocyte Activation/genetics , Oxidative Phosphorylation , Phenotype , Prognosis , Reactive Oxygen Species/metabolism , Severity of Illness Index , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL